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Società Italiana di Fisica
Springer-Verlag 2001

Femtosecond pump-probe fluorescence signals from classical
trajectories: comparison with wave-packet calculations

V.A. Ermoshin1 and V. Engel2,a

1 Fock Institute of Physics, The University of St. Petersburg, 198504 St. Petersburg, Russia
2 Institut für Physikalische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Received 28 March 2001

Abstract. A classical approach to simulate femtosecond pump-probe experiments is presented and com-
pared to the quantum mechanical treatment. We restrict the study to gas-phase systems using the I2

molecule as a numerical example. Thus, no relaxation processes are included. This allows for a direct com-
parison between purely quantum mechanical results and those obtained from classical trajectory calcula-
tions. The classical theory is derived from the phase-space representation of quantum mechanics. Various
approximate quantum mechanical treatments are compared to their classical counterparts. Thereby it is
demonstrated that the representation of the radial density as prepared in the pump-process is most crucial
to obtain reliable signals within the classical approach.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
33.80.Wz Other multiphoton processes

1 Introduction

Time-resolved spectroscopy of molecules is a powerful
technique for the investigation of photo-induced dynam-
ical processes [1–6]. The use of ultrashort laser pulses
allows for the preparation of an ensemble of molecules
in a coherent superposition of ro-vibrational or transla-
tion states, i.e. a nuclear wave packet [7]. Since such a
wave packet represents a non-stationary state of the sys-
tem under investigation, observables are inherently time-
dependent. Interrogating the sample with a time-delayed
second pulse then allows to monitor the quantum dynam-
ics of the system.

From a theoretical point of view, quantum mechani-
cal calculations of time-resolved signals for isolated small
molecules are straightforward. Unfortunately this is not
the case for larger molecules or molecules interacting with
a multi-particle environment. Here, clearly, one is forced
to employ approximate methods. Concerning the numer-
ical effort, a classical approach is highly advantageous;
furthermore such a description is truly ab initio in the
sense that all interactions can be incorporated without
any limitation.

In recent time much attention has been paid to the cal-
culation of pump-probe fluorescence signals from classical
trajectories [8–14]. Other classical approaches were used
for the simulation of coherent non-linear spectroscopy
(see, e.g. Refs. [15–17]) which will, however, not be ad-
dressed in what follows. This strategy seems to be suc-
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cessful for the simulation of femtosecond spectroscopy if
not too long time periods are regarded. For heavier atoms,
quantum-mechanical effects are substantial only at longer
times [18]; on the other hand, in the case of a system-bath
coupling, the interaction with the environment leads to
the loss of coherence of the molecular wave packet thus
reducing the importance of quantum-mechanical effects.

Whereas many observables can, to a very good ap-
proximation, be calculated classically [19] the principal
problem associated with classical trajectory calculations
of time-resolved signals is how to incorporate the laser-
induced transitions between molecular electronic states
into the classical scheme. Regarding a transition from the
electronic state |g〉 to an excited state |e〉, the simplest
scheme is to start all trajectories from the point r̄ defined
by the resonance condition Ue(r̄) − Ug(r̄) = ~ωpump [20],
where Ue, Ug are the respective potential curves. This ap-
proximation neglects the spatial extent of the initial wave-
packet as well as the finite temporal width of the femtosec-
ond pump-pulse. Nevertheless, a qualitative description of
the pump-probe spectroscopy is provided within this sim-
ple approach.

An incorporation of the pulse temporal width can be
performed using first order time-dependent perturbation
theory neglecting all kinetic energy operators which ap-
pear in the expression for the excited state wave func-
tion [21]. The latter then is a product of the initial state
and a r-dependent window function F (r). The correspond-
ing classical distribution is obtained by sampling from the
quantum density. This approximation can be applied for
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relatively short laser pulses, but for commonly employed
pulses, having widths in the order of 100 fs it is likely to
fail. A classical method which takes the molecular mo-
tion during the pulse excitation into account has been
proposed by Martens and co-workers [8]. Using a time-
integral representation for the density matrix the authors
constructed classical densities which depend on both the
spectral (through the function F (r)) and temporal vari-
ables. Shen and Cina [9] introduced a classical scheme in-
cluding the case of overlapping pump- and probe-pulses.

The important work of Li et al. [8] uses the density-
matrix formalism which provides a direct correspon-
dence between quantum-mechanical and classical densi-
ties. This is necessary if one is interested in processes
where a system-bath interaction is of importance. The pri-
mary goal of the present paper is to arrive at a classical
approach to calculate pump-probe fluorescence signals us-
ing wave functions as a starting point. Since a quantum
mechanical phase space distribution is obtained via the
Wigner transformation [22–24] we use this approach to
set up the classical description. In order to judge on the
results of the classical calculations they are compared to
those obtained from quantum calculations.

The paper is organized as follows. In Section 2 we
consider the exact and approximate quantum-mechanical
treatment of pump-probe experiments. A classical ap-
proach is presented in Section 3. We test the theory and
discuss the results in Section 4 and concluding remarks
are contained in Section 5.

2 Quantum-mechanical treatment

2.1 General considerations

Let us regard a diatomic molecule with reduced mass m,
an electronic ground state |g〉 and two excited states
|e〉, |f〉. For simplicity we treat only a single nuclear
degree-of-freedom with vibrational coordinate r. Our de-
scription of the pump- and probe-transition is based on
first-order time-dependent perturbation theory which ap-
plies in the limit of weak laser intensities. Starting, at time
t = 0, from the initial wave function Ψg(r) in the electronic
ground state, the nuclear wave function in state |e〉 which
is prepared in the pump-process is given as

Ψe(r, t2) = − i
~

∫ t2

0

dt e−iHe(t2−t)/~W1(r, t)

× e−iHgt/~Ψg(r), (1)

where Hg,e denote the Hamiltonians for the nuclear mo-
tion in the two electronic states. The molecule-field inter-
action, within the dipole approximation, takes the form

W1(r, t) = −µge
2
f(t)e−iω1t, (2)

where µge denotes the projection of the transition dipole-
moment (for the |e〉 ← |g〉 transition) on the polarization
vector of the electric field and we kept only the resonant

term leading to photon absorption. In what follows, we set
iµge/2~ = 1, thereby assuming a constant dipole moment
(Condon approximation) and neglecting irrelevant phase
factors. Since below we calculate only populations and no
absolute numbers, this convention is reasonable.

The pump laser-pulse is characterized by its frequency
ω1 and a temporal shape function which we assume to be
a Gaussian: f(t) = exp

(
−(t− tc)2/2τ2

)
. The integration

interval [0, t2] is chosen such that tc = t2/2 and f(t) is
sufficiently small at the boundaries. This implies that only
times t2 are considered for which the pump-excitation has
finished.

Insertion of equation (2) into equation (1) and back-
propagation from time t2 to the time origin yields

Ψe(r, 0) =
∫ ∞

0

dt f(t)ei(He−~ω1)t/~e−iHgt/~Ψg(r), (3)

where the integration is over the entire real axis. The wave
function for times t2, after the pump-process is finished,
then is simply given as Ψe(r, t2) = e−iHet2/~Ψe(r, 0).

Let us next turn to the probe excitation to state |f〉,
which is induced by a second laser pulse, delayed by time
td with respect to the pump-pulse. Giving the interaction
energy as

W2(r, t) = −µfe
2
f(t− td)e−iω2(t−td), (4)

and applying the same approximations as above, the nu-
clear wave function in the electronic state |f〉 can be writ-
ten as

Ψf (r, td) =
∫ ∞

0

dt f(t)ei(Hf−~ω2)t/~e−iHet/~Ψe(r, td). (5)

The fluorescence signal S(td) from state |f〉 is assumed to
be proportional to the population in this state after the
probe pulse passed the sample:

S(td) = 〈Ψf (r, td)|Ψf (r, td)〉· (6)

We will refer to the approach presented in this subsection
as to the “exact” calculation.

2.2 Approximate calculation of pump-probe signals

The numerical calculation of the pump-probe signal is,
in principle, straightforward. Nevertheless, if the signal is
required for a long time and especially if several degrees-
of-freedom have to be treated, the calculation becomes
cumbersome. This, in particular, applies to the treatment
of the probe transition. Several approximations can now
be introduced as will be described in what follows. We
note that the approximations given below are not new and
have been used in one or the other form by many authors.
Here we give the corresponding equations to make con-
tact to the classical formalism. Various levels of accuracy
are included and the resulting approximations are named
accordingly for convenience.
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Inserting equation (5) into equation (6), the pump-
probe signal can be written as

S(td) =
∫ ∞

0

dt f(t)
∫ ∞

0

dt′f(t′)eiω2(t−t′)

×
〈
Ψe(r, td)|U†(t)U(t′)|Ψe(r, td)

〉
, (7)

where the propagator U(t) is defined as

U(t) = eiHf t/~e−iHet/~. (8)

The double integral in equation (7) can be evaluated using
the approximation [25]

eiHf t/~e−iHet/~ ≈ ei(Hf−He)t/~e1/2[Hf ,He](t/~)2
, (9)

where higher order terms in t/~ were omitted. Neglecting
the commutator [Hf ,He] in the latter equation yields an
expression for the |f〉-state wave function as [21]:

ΨSF
f (r, td) =

∫ ∞
0

dt f(t)ei(∆fe(r)−~ω2)t/~Ψe(r, td). (10)

Here the difference ∆fe(r) = Uf (r) − Ue(r) between
the potentials in the electronic state |f〉 and |e〉 was
introduced.

Analytical evaluation of the Gaussian integral (10)
gives

ΨSF
f (r, td) = F2(r)Ψe(r, td), (11)

with the spatial window defined as

F2(r) =
√

2πτ exp
(
−τ

2(∆fe(r) − ~ω2)2

2~2

)
· (12)

In deriving equation (12) we have ignored a phase factor
which arises since the probe-pulse Gaussian envelope is
not centered around t = 0. This is, however, not relevant
for the pump-probe signal, see equation (6). Thus, within
the above approximation, the |f〉-state wave-function is
obtained by the product of Ψe(r, td) with the r-dependent
window, thus we use the abbreviation SF which stands for
spatial filtering. The signal then takes the simple form

SSF(td) =
〈
Ψe(r, td)|F †2 (r)F2(r)|Ψe(r, td)

〉
· (13)

The latter expression for the pump-probe signals appeals
to the central idea of pump-probe spectroscopy: the sig-
nal measures a probability density, located in a restricted
area of configuration space. Since the density is time-
dependent, temporal changes of the signal directly map
the quantum dynamics. We note that the above described
approximation, namely the neglect of the kinetic energy
operators has also been used in deriving e.g. the reflec-
tion principle of cw-absorption spectroscopy; for an ex-
tended discussion see the book of Schinke and references
therein [26].

The SF approximation does not account for the wave-
packet motion during the laser excitation-process. This

motion can be incorporated by approximation of the com-
mutator [Hf ,He] = [T,∆fe(r)], where T = p2/2m is the
kinetic energy operator [27–29]. Evaluation of the commu-
tator yields

[T,∆fe(r)] = − i~
2m

(
2∆′fe(r)p +∆′′fe(r)

)
, (14)

where ∆′fe(r) is the derivative of ∆fe(r) with respect to r,
and ∆′′fe(r) denotes the second derivative. The approxi-
mation now consists in the substitution of the momentum
operator p by its mean value p = 〈Ψe|p|Ψe〉, resulting in

[T,∆fe(r)] ≈ −
i~p∆′fe(r)

m
, (15)

where we, for simplicity, assumed a linear difference po-
tential. The equation for the final state wave function in
this “mean momentum” (MM) approximation reads

ΨMM
f (r, td) =

∫ ∞
0

dt f(t)ei(∆fe(r)−~ω2)t/~

× e−iβ(r,p)t2/~2
Ψe(r, td), (16)

where β(r, p) = ~p∆′fe(r)/2m. Again, we encounter a
Gaussian integral leading to the expression (ignoring a
phase factor, as above)

ΨMM
f (r, td) = G2(r, p)Ψe(r, td), (17)

where we used the definition

G2(r, p) =

√
2πτ2

1 + 2iτ2β(r, p)/~2

× exp
(
− τ2(∆fe(r) − ~ω2)2

2~2(1 + 2iτ2β(r, p)/~2)

)
· (18)

As in the SF case (see Eq. (11)), within the MM approx-
imation the wave function Ψf (r, td) is obtained by mul-
tiplication of Ψe(r, td) with an r-dependent factor which,
however, additionally depends on the mean momentum of
the vibrational wave packet in the |e〉 state. The corre-
sponding signal then is of the form

SMM(td) =
〈
Ψe(r, td)|G†2(r, p)G2(r, p)|Ψe(r, td)

〉
· (19)

The MM approximation will, in general, yield more accu-
rate results than the SF approximation since the commu-
tator [He,Hf ] is taken into account. However, this is not
done exactly and problems are to be expected at e.g. the
turning points of the vibrational motion where p ∼ 0. Here
the SF and MM approximations yield identical results.

A solution which, in calculating the pump-probe sig-
nals, incorporates the commutator [Hf ,He] in a more ac-
curate way was proposed in reference [11]. In what fol-
lows we will refer to this approach as the spatiotemporal
filtering approximation (STF), for reasons that will be-
come apparent soon. Using new variables t1 = t − t′ and
t2 = (t+ t′)/2, the propagator (8) can be written as

U(t) = eiHf t2/~eiHf t1/(2~)e−iHet1/(2~)e−iHet2/~; (20)

U(t′) = eiHf t2/~e−iHf t1/(2~)eiHet1/(2~)e−iHet2/~,
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so that

U†(t)U(t′) = eiHet2/~
[
eiHet1/(2~)e−iHf t1/~eiHet1/(2~)

]
× e−iHet2/~. (21)

The operator product appearing in the square brackets of
equation (21) can be approximated to third order in t1/~
yielding

U†(t)U(t′) ≈ eiHet2/~e−i(Hf−He)t1/~e−iHet2/~. (22)

Using the property of the product of two Gaussians:
f(t)f(t′) = f(t1/

√
2)f(
√

2t2) in equation (7) one obtains

SSTF(td) =
∫ ∞

0

dt2 f(
√

2t2)
∫ ∞
−∞

dt1 f
(
t1√

2

)
×
〈
Ψe(r, t2)|e−i(∆fe(r)−ω2)t1/~|Ψe(r, t2)

〉
· (23)

Finally, integration over t1 yields

SSTF(td) =
∫ ∞

0

dt2 f(
√

2t2)〈Ψe(r, t2)|F̃2(r)|Ψe(r, t2)〉, (24)

where

F̃2(r) = 2τ
√
πe−

τ2(∆fe(r)−~ω2)2

~2 · (25)

Note that since the time–integrals in the last two expres-
sions start at t1 = t2 = 0 and in the above equations
|Ψe(r, t1 = t2 = 0)〉 ≡ |Ψe(r, td)〉.

Evaluating the signal using equation (24) does not
need an explicit treatment of the probe excitation. It is
similar to the expression of equation (13) but now, the
exact time-evolution of the |e〉-state wave packet enters
and the signal is obtained as a weighted time average.
A formula similar to equation (24) was also obtained in
reference [8].

In summary, applying any of the three described ap-
proximations (SF, MM, STF) in the quantum-mechanical
calculation of pump-probe signals does not require a prop-
agation of a wave packet in the final state |f〉 hence leading
to a considerable saving of computer time. Moreover, in
the next section we show that these approximations serve
as a starting point for a classical evaluation of pump-probe
signals.

3 Classical treatment

3.1 General considerations

To obtain a classical scheme to calculate pump-probe
signals, we start with the phase-space formulation of quan-
tum mechanics. Given the wave function Ψ(r) a phase-
space distribution can be calculated as the Wigner trans-
form [22–24]

D(r, p) =
1
π~

∫
dy Ψ(r − y)∗Ψ(r + y)e−2ipy/~. (26)

The expectation value of any operator A then is ob-
tained as

〈A〉qm =
∫

dr
∫

dp AW (r, p)D(r, p), (27)

where we used the definition

AW (r, p) = 2
∫

dy 〈r + y|A|r − y〉e−2ipy/~. (28)

In particular, if A depends on r only, AW (r) = A(r) [30].
Another important case is the density operator. In our
treatment of pure states it has the form [31] Γ =
(1/2π~)|Ψ〉〈Ψ |. Calculation of its Wigner transform via
equation (28) obviously leads to equation (26).

The Wigner transform of an operator product
(A(r, p)B(r, p))W is of the form

(A(r, p)B(r, p))W = ei~/2(∂Bp ∂
A
r −∂Br ∂Ap )

×AW (r, p)BW (r, p), (29)

and assumes a simple form only if one sets ~ = 0 in the ex-
ponential operator [30]. Adopting this approximation (as
we will do in what follows) the product of three operators
transforms as

(ABC)W = (A)W (B)W (C)W , (30)

in accordance with classical mechanics. In the special case
that A and C are functions of the position operator r̂ only
and B = Γ = (1/2π~)|Ψ〉〈Ψ | one obtains

(A(r̂)ΓC(r̂))W = A(r)DΨ (r, p)C(r). (31)

A dynamical equation for the phase space density (26) is
derived as [22–24,32]

d
dt
D(r, p) =

(
p

m

∂

∂q
+
∂V

∂q

∂

∂p

)
D(r, p)

+
∑

j=3,5,...

1
j!

(
i~
2

)(j−1)
∂jV

∂qj
∂jD(r, p)
∂pj

· (32)

By inspection of the equation of motion (32) it should be
immediately clear that a general solution, even numeri-
cally, is difficult to obtain, see e.g. [33–35]. However, two
useful facts appear: (i) in the limit (~→ 0) the dynamical
equation assumes the form of the classical Liouville equa-
tion; and (ii) for a quadratic potential, the quantum equa-
tion exactly corresponds to the classical one. As a conse-
quence of the latter situation, given an initial density, the
quantum mechanical and classical densities move identi-
cally [32].

We now look for a convenient representation of the
time-dependent phase space-density. First we use the fact
that the solution of the classical Liouville equation start-
ing with an initial delta-function δ(r− r0, p− p0) remains
a delta-function δ(r − r(t), p − p(t)), where r(t) and p(t)
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are found from Hamilton’s equations of motion [32]. Fur-
thermore we use Monte-Carlo sampling to obtain

D(r, p, t) =
1
N

N∑
i=1

δ(r − ri(t), p− pi(t))D(ri0, p
i
0). (33)

Here N is the number of sampling points (ri0, p
i
0) in phase

space that are used as initial conditions for the classical
equations of motion.

The initial function D(r0, p0) can be the Wigner trans-
form of the initial quantum mechanical wave function or
can be a classical thermal distribution function; in equa-
tion (33) it naturally appears as a function which defines
weights for the sampling points. The time-dependence
now is contained only in the δ-functions. Thus, the time-
evolution of any classical density can be monitored by
solving the classical equations of motion instead of solving
the Liouville equation. Note, however, that this is an ap-
proximation for the evolution of the quantum-mechanical
systems since the equation of motion (32) in general
is much more complicated, for a careful discussion see
e.g. [32].

3.2 The pump-transition

The phase-space distribution prepared in the pump pro-
cess is obtained from the Wigner transform of the wave
function Ψe(r) in the excited state |e〉 (Eq. (3)). The latter
can be evaluated exactly as well as approximately. Since
for longer excitation pulses the Wigner function, in gen-
eral, has an oscillating structure (see below) it is not a
good sampling function. To calculate the initial |e〉-state
density we will, in what follows, employ the approxima-
tion equation (30). Applying the SF approximation to the
pump transition (see Eq. (11)) and using equation (31)
yields

DSF
e (r, p) =

[
F1(r̂)ΓgF

†
1 (r̂)

]
W

= F 2
1 (r)Dg(r, p), (34)

where

F1(r) =
√

2πτe−
τ2(∆eg(r)−~ω1)2

2~2 · (35)

Here ∆eg(r) denotes the difference between the potentials
in state |e〉 and |g〉. Equation (34) defines a distribution
function to sample initial conditions for a set of N trajec-
tories, all starting at the same time t = 0. The subsequent
time-evolution is obtained by solving the classical equa-
tions of motion.

As it was already noted above, the SF-approximation
does not account for the nuclear motion during the optical
transition. The MM approximation (Sect. 2.2) will not
be of advantage here since the mean momentum in the
initial vibrational state is zero. Instead we incorporate the
motion in the excited state by a time sampling (ts), as
was done in the STF approximation which was discussed
in connection with the quantum mechanical evaluation of
pump-probe signals (Sect. 2.2). In order to do so, let us

start with the general expression for the |e〉-state density
operator after the pump-pulse action

Γe(t = 0) =
∫ ∞

0

dtf(t)
∫ ∞

0

dt′f(t′)e−iω1(t−t′)

× U(t)ΓgU†(t′). (36)

The propagators, using the variables t1 = t− t′ and t2 =
(t+ t′)/2, read

U(t) = eiHet2/~
[

eiHet1/(2~)e−iHgt1/(2~)
]
e−iHgt2/~

≈ eiHet2/~ei∆eg(r)t1/(2~)e−iHgt2/~, (37)

U(t′) = eiHet2/~
[

e−iHet1/(2~)eiHgt1/(2~)
]

e−iHgt2/~

≈ eiHet2/~e−i∆eg(r)t1/(2~)e−iHgt2/~, (38)

where we approximated the terms in the square brackets
by neglecting commutators of the form [T,∆eg]. Since Ψg is
an eigenstate of Hg, the action of the propagator e−iHgt2/~

leaves the density operator Γg = (1/2π~)|Ψg〉〈Ψg| invari-
ant. Thus, equation (36) reads

Γe(t = 0) =
∫ ∞

0

dt2 f(
√

2t2)
∫ ∞
−∞

dt1 f
(
t1√

2

)
eiHet2/~

×A e−iHet2/~, (39)

where we introduced the operator

A = ei(∆eg(r)−~ω1)t1/(2~)Γg ei(∆eg(r)−~ω1)t1/(2~). (40)

The operator A(H) = eiHet2/~A e−iHet2/~, appearing
in equation (39) is a time-dependent operator in the
Heisenberg representation, thus it fulfills the Heisenberg
equation of motion [25]

dA(H)

dt
=

1
i~
[
A(H),He

]
. (41)

The phase-space analogue of this equation is equa-
tion (32), and the classical limit amounts to integration
of the classical Liouville equation for the corresponding
distribution function [31]. The latter can be obtained us-
ing equation (31) as

Acl =ei(∆eg(r)−~ω1)t1/(2~)Dg(r, p)ei(∆eg(r)−~ω1)t1/(2~). (42)

Performing the integration over t1 we obtain for the dis-
tribution function corresponding to the operator Γe

De(r, p, t = 0) =
∫ ∞

0

dt2 f
(√

2t2
)[
F̃1(r)Dg(r, p)

]
t2
, (43)

where

F̃1(r) = 2τ
√
π exp

(
−τ

2(∆eg(r)− ~ω1)2

~2

)
· (44)

The subscript t2 appearing in equation (43) refers
to a propagation in the |e〉 state and indicates that
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[F̃1(r)Dg(r, p)]t2 consists of trajectories which started at
time t2 during the pump-pulse excitation but have been
propagated back in time to the origin t = 0. The in-
tegral over t2 in equation (43) can be evaluated by
Monte-Carlo sampling, where the distribution function
f(
√

2t) [F̃1(r)Dg(r, p)]t now depends on time. Note that
the time sampling has to be performed for the finite length
of the pump-pulse interaction only.

3.3 The probe-transition

The initial classical density may now be propagated by
solving the classical equations of motion (see Eq. (33)). In
order to calculate the pump-probe signal let us regard the
density at a time t after the pump-pulse interaction. By
inspection of the quantum mechanical expressions for the
signal, obtained in the various approximations (Eqs. (13,
19, 24)), we note that the signal in each case is related to
the expectation value of an r-dependent operator. Using
the expression for an expectation value within the phase-
space formulation (Eq. (27)) we obtain classical expres-
sions for the signals. Below we give only the most accu-
rate STF formula for the signal which is also used in our
numerical examples. The corresponding expressions in the
SF- and MM-approximation are readily obtained.

SSTF
cl (td) =

∫ ∞
0

dt f(
√

2t)
∫

dr
∫

dp F̃2(r)De(r, p, t). (45)

Analogous to the quantum mechanical expression equa-
tion (24) we have De(r, p, t = 0) ≡ De(r, p, t = td).

Since the classical density in equation (45) is repre-
sented as a weighted sum of delta-functions (see Eq. (33)),
the integration transforms to the summation of F̃2(ri(t))
weighted by the distribution function De. Here the coordi-
nates ri(t) are solutions of Newton’s equation with initial
conditions sampled from De. In equation (45), an addi-
tional convolution with pulse shape function should be
carried out at the end of the Monte-Carlo integration.

4 Numerical examples

4.1 Description of the model

We use the isolated I2 molecule at a temperature of 0 K
as a model system. Pump-probe fluorescence experiments
have been carried out by Zewail and coworkers [36–38].
In these experiments, a first ultrashort laser pulse pre-
pares a wave packet in the electronic state |e〉 (the B-
state), see Figure 1. The time-delayed probe pulse ex-
cites the molecule into an ion-pair state |f〉 (the f -state
is considered here). The signal consists of the total fluo-
rescence from this state, detected as a function of pump-
probe delay. If not stated differently, we use a 570 nm
pump pulse and wave lengths of 310, 330, 340 nm for
the probe laser. Assuming a Gaussian envelope func-
tion exp(−t2/2τ2) the temporal width (full-width-at-half-
maximum) is 2τ

√
2 ln 2. Since the experimental definition
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Fig. 1. Pump-probe excitation scheme for the I2 molecule.
Shown are potentials corresponding to the ground (|g〉 = X),
an excited (|e〉 = B), and an ion-pair electronic state (|f〉 = f),
from which fluorescence is detected. The arrows indicate the
center wavelengths of the pump (570 nm) and probe (310 nm
(a), 330 nm (b), 340 nm (c)) femtosecond pulses. Schematically
shown are the initial vibrational state in the |g〉-state, and the
wave packet at the turning points in the |e〉-state.

of the pulse width is based on the measurement of the in-
tensity autocorrelation function we take τ = τexp/(2

√
ln 2)

in our definition of the pulse width. The potential energy
curves for the electronically excited states were taken from
references [39,40]. For the ground state (X-state) we used
the harmonic approximation to the Morse potential given
in reference [41] (ω = 213.6 cm−1, r0 = 5.038 a.u.). A
spatial grind of 2 048 points in the interval [4 a.u., 9 a.u.]
was employed in the quantum propagation which was per-
formed with the Split-Operator method [42]. The classical
equations of motion are integrated with the velocity Verlet
algorithm [19]. The time-step was chosen to be 2 fs in the
quantum as well as the classical calculation. The pump-
probe signals calculated by classical mechanics were aver-
aged over 20 000 trajectories.

4.2 The pump-transition

Let us, in this subsection, discuss the relation between the
quantum mechanical probability distributions and their
classical counterparts obtained in the pump-excitation
process. In Figure 2 we compare the density |Ψe(r, 0)|2 cal-
culated within the SF approximation (dotted line), with
the numerically exact one (solid line). Whereas for a 20 fs
pulse, a reasonable agreement is found, the figure shows
that the SF approximation fails drastically for the longer
pulse length of 60 fs. First of all, a prominent nodal struc-
ture, as visible in the exact solution, is not reproduced.
The latter results from quantum-mechanical interference
effects which arise from the coherent sum of the ampli-
tudes for photon absorption at different times during the
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Fig. 2. Vibrational wave packets |Ψe(r, 0)|2 after pump exci-
tation with a 520 nm pulse of different width, as indicated.
The solid line shows wave packets calculated exactly, the dot-
ted line corresponds to wave functions calculated within the
SF approximation.

pump–interaction [43]. Besides the lack of the structure
in the SF-density, it becomes more localized with increas-
ing pulse width. The opposite is true for the exact density
which becomes more delocalized. The latter effect is obvi-
ously due to the quantum dynamics in the excited state.

It is clear that the classical distribution function cal-
culated within the SF approximation (Eq. (34)) and
regarded as a function of r corresponds exactly to the
quantum mechanical density obtained within the same ap-
proximation. Thus it suffers from the same deficiencies.
The effect of molecular motion during the laser excitation
is taken into account by using the time sampling as de-
scribed in Section 3.3. To give a more instructive insight
into the phase-space picture, we plot the Wigner transform
of the exact wave function Ψe(r, 0) and the distribution of
classical particles calculated according to equation (43) in
Figure 3. We observe that the classical density covers the
region of the largest maximum of the Wigner function. An
increase of the pulse width leads to the spreading of both
the quantum-mechanical and classical function in phase
space. The spread of the classical distribution is due to
the time sampling giving rise to phase-space points lo-
cated at different distances, dependent on the time they
are generated. Naturally, the quantum mechanical oscil-
lations cannot be seen in the classical function. A second
effect is a narrowing of the ridge of the classical distri-
bution with increasing pulse width. This is a result of a
smaller window function obtained for longer pulses, lim-
iting the initial positions of trajectories. It is noteworthy
that in the limit of continuous wave excitation the present
picture is similar to Figure 4a of Heller’s paper devoted to
classical models of photodissociation dynamics [44].

Figure 4 compares the quantum mechanical spatial
density with the classical coordinate distribution function
(obtained via integration over momentum and sampled

Fig. 3. The Wigner function of the exact wave packet Ψe(r, 0)
as displayed in Figure 2, is compared with a distribution of
200 classical phase-space points sampled from equation (43)
and propagated to the time origin. Shown is the modulus of
the Wigner function.
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citation with a 60 fs pump pulse are compared with classical
coordinate distribution-functions. The pump-pulse wavelength
was varied, as indicated. The classical distribution functions
are shown as histograms over 20 000 initial configurations.
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according to Eq. (43)). The classical function is in good
agreement with the quantum-mechanical probability func-
tion averaged over the oscillating structure. In fact, pump-
probe signals behave similarly in the sense that only an
integrated density is measured. This suggests that the
classical model could be reliable in the calculation of
pump-probe signals, at least for times before purely quan-
tum mechanical features like revivals are encountered (see
below). Figure 4 contains curves calculated for different
pump-pulse wavelengths. In the case of non-resonant ex-
citation (620 nm wavelength, as commonly used in exper-
iments) the classical and quantum-mechanical distribu-
tions are apparently centered at different points. Note that
the point obtained for a vertical transition corresponds to
the maximum of the classical particles distribution. More-
over, the same effect can be found in Figure 2 that shows a
wave packet calculated exactly and within the SF approx-
imation. The outward shift of the quantum-mechanical
distribution compared to classical one is well known and
can be understood using a linear approximation of the
potential curve [26].

4.3 Calculations of pump-probe signals

In order to illustrate differences between approximate and
exact calculations of the probe excitation we performed
quantum-mechanical calculations of the signals. The ini-
tial wave function was calculated exactly for a laser wave-
length of 570 nm and a pulse duration of 60 fs. The probe
wavelength was set to three values (310, 330, and 340 nm)
in order to explore different locations of the probe window
ranging from the middle to the outer turning point of the
wave packet trajectory (see Fig. 1). The probe-pulse width
was set to 60 fs as well. Each panel of Figure 5 shows sig-
nals calculated exactly (solid line), within the SF- (long
dashed line), the MM- (dashed line) and the STF-method
(dotted line). As expected from our theoretical analysis
the convolution formula gives, in general, the best agree-
ment with the exact pump-probe signal.

In Figure 6 we compare classically and quantum-
mechanically calculated signals for the same pulse pa-
rameters as used for the results displayed in Figure 5.
The quantum-mechanical treatment of the pump- and
probe-transitions was performed exactly. The wave func-
tion Ψe(r, 0) was normalized after the pump excitation was
completed. The classical distribution was sampled accord-
ing to equation (43) and the probe excitation was treated
using the STF formula (Eq. (45)). In general, the classical
pump-probe spectra (dotted line) are in good agreement
with quantum-mechanical ones (solid line). Upon varia-
tion of the probe-pulse wavelength, signals calculated by
classical and quantum-mechanical approaches behave sim-
ilarly. However, with the course of time, the classical signal
runs more and more ahead corresponding to longer vibra-
tional periods. We explain such a behavior with the help
of Figure 4 which shows that the classical initial distri-
bution is shifted towards shorter distances corresponding
to a higher potential energy. Due to the potential anhar-
monicity, the classical distribution thus has a lower aver-
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Fig. 5. Pump-probe signals calculated quantum-mechanically
for a 570 nm pump pulse and various probe-pulse wavelengths,
as indicated (60 fs pulses). The solid line shows the exact
quantum-mechanical solution, which is compared to the vari-
ous approximations, as indicated.
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Fig. 6. Pump-probe signals calculated quantum-mechanically
(solid line) and classically (dotted line) are compared for an
excitation with 60 fs pump- and probe-pulses. The pump ex-
citation wavelength is 570 nm, and various probe wavelengths
were used.

age vibrational frequency (96.7 cm−1 vs. 99.3 cm−1 for the
quantum-mechanical wave packet). Thus, we show that
the effect of the initial state representation on the pump-
probe signals exists but it is, in general, small. In pass-
ing by, we note that we were not able to obtain a better
agreement between the classical and quantum-mechanical
results. This is in contradiction to what was found by Li
et al. [8]. As a main reason, our initial wave packet has
an oscillatory structure and differs from the corresponding
classical distribution, while the picture presented in refer-
ence [8] shows practically an identical initial quantum and
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Fig. 7. Classical (upper panel) and quantum (lower panel)
pump-probe signals calculated for 570 nm/340 nm laser pulses
of 60 fs width are shown on a long time-scale.

classical density in the electronic B-state. Also, Shen and
Cina [9] reported large deviations between classical and
quantum mechanical densities. The reason is that, oppo-
site to the work presented in reference [8] and the present
work, the time-sampling (see Eq. (43)) was not performed.

Finally, in Figure 7 we compare the long-time quan-
tum and classical evolution, as reflected in a pump-probe
signal. The re-focusing of the quantum-mechanical wave
packet leading to a revival of the signal cannot be re-
produced by a purely classical scheme. This is clear since
revivals are due to the quantization of energy and are not
present in the harmonic case [45]. On the other hand, the
classical approach is necessary for a description of systems
which consist of many particles. In this case, interactions
in the system destroy the quantum coherence, therefore
the classical method should generally perform better for
more complex cases than for an isolated system.

5 Conclusion

Our results give a general support for using classical me-
chanics in theoretical considerations of femtosecond exper-
iments. An important point is the accurate representation
of the initial state prepared by the pump pulse. Time sam-
pling during the pump excitation is proved to be a sound
approach, the agreement improves for a resonant excita-
tion and for shorter pulses.

The Wigner phase-space method employed here for
a pure state, applies equally well to incoherent states.
For the harmonic oscillator, the statistical sum of the
Wigner functions calculated from the oscillator eigen-
functions gives a Boltzmann distribution in the classical
limit [31]. Therefore sampling over the classical config-
uration space using the Boltzmann distribution-function
w(r, p) = exp(−(p2/2m+ Ug(r))/kBT ) can be considered
as a classical equivalent to the thermal sum over initial

vibrational states in the quantum-mechanical treatment.
It is noteworthy that quantum and classical statistics con-
verge in the high temperature limit.

In summary, based on an approximate quantum-
mechanical description of optical transitions we have de-
veloped a classical scheme for the simulation of femtosec-
ond pump-probe experiments. The classical theory has
been tested versus quantum-mechanical calculations us-
ing the isolated I2 molecule as an example. We have, in
the meantime, applied the here formulated classical ap-
proach to various situations where an anharmonic oscil-
lator interacts with a surrounding. We have first simu-
lated collision-induced recombination of I2 in Ar [46]. In
the corresponding femtosecond experiment [38], the pump
pulse excites molecules above the dissociation threshold,
and subsequent collisions with Ar lead to the appearance
of an oscillatory background in the pump-probe signal.
The simulation shows that these features originate from
the regular structures in the time-dependent radial I–I dis-
tribution function. An analysis of the phase-space picture
gives us an interpretation of the structures in terms of
caustics [46,47]. We have also investigated the relaxation
of a bound-state vibrational wave packet, introducing a
novel “phase-energy” approach to the vibrational relax-
ation problem [48]. In the both cases, the classical simu-
lation has not only helped to elucidate mechanisms of the
underlying physical processes, but has also shown how col-
lision processes are reflected in the time-resolved signals
(see also Ref. [49]). In any of the former cases we found
excellent agreement with experimental results indicating
that in many situations a classical approach to simulate
transient spectroscopy is worthwhile to undertake.

This work was supported by the Deutsche Forschungsgemein-
schaft (Schwerpunktprogramm “Time-dependent phenomena
and methods in quantum systems of physics and chemistry”)
and by the Fonds der Chemischen Industrie.
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